Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ji-Yang Xu, ${ }^{\text {a }}$ Damacio S.
Contreras, ${ }^{\text {b }}$ Frank R. Fronczek ${ }^{c}$ and Banglin Chen ${ }^{\text {b }}$ *

${ }^{\text {a }}$ Department of Biochemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China, ${ }^{\text {b }}$ Department of Chemistry, The University of Texas-Pan American, Edinburg, TX 78541-2999, USA, and ${ }^{\text {c }}$ Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA

Correspondence e-mail: banglin@utpa.edu

Key indicators

Single-crystal X-ray study
$T=105 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
H -atom completeness 87%
R factor $=0.065$
$w R$ factor $=0.140$
Data-to-parameter ratio $=15.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Poly[diaquabis $\left(\mu_{2}-4,4^{\prime}\right.$-bipyridine) $)$ bis $\left(\mu_{3}-5,5^{\prime}-\right.$ dicarboxybiphenyl-2,2'-dicarboxylato)dicobalt(II) tetrahydrate]

In the title compound, $\left\{\left[\mathrm{Co}_{2}\left(\mathrm{C}_{16} \mathrm{H}_{8} \mathrm{O}_{8}\right)_{2}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\right.$-$\left.4 \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, two types of Co atoms are bridged by $5,5^{\prime}$-dicarboxy-biphenyl-2,2'-dicarboxylate and 4,4'-bipyridine ligands to form a rectangular two-dimensional $(4,4)$ grid. Packing of these grids mediated by hydrogen bonding leads to a threedimensional porous metal-organic framework with water molecules inside the cavities. Both of the independent Co atoms lie on a twofold axes, upon which the long axes of both bipyridine ligands also lie, forming chains in the [010] direction. Both Co atoms have a trans $-\mathrm{O}_{4} \mathrm{~N}_{2}$ coordination, but one has four carboxylate O atoms in the equatorial plane, while the other has two carboxylates and two water molecules in this plane.

Comment

There has been extensive research interest in porous metalorganic frameworks (MOFs) for their potential applications in gas storage, separation, molecular recognition, magnetism and catalysis (Eddaoudi et al., 2001; Kitagawa et al., 2004; Yaghi et al., 2003; Janiak, 2003). These kinds of porous MOFs can not only be constructed from single organic linkers (Chen et al., 2005), but can also be self-assembled from mixed organic linkers (Rather \& Zaworotko, 2003; Chun et al., 2005; Ma et al., 2005; Chen et al., 2006). The title compound, (I), is one of the MOFs constructed from cobalt(II) nitrate and the organic linkers biphenyl- $2,2^{\prime}, 5,5^{\prime}$-tetracarboxylic acid $\left(\mathrm{H}_{4} \mathrm{BPTC}\right)$ and $4,4^{\prime}$-bipyridine, and its structure is reported here.

Received 22 June 2006 Accepted 17 July 2006
(C) 2006 International Union of Crystallography All rights reserved

Figure 1
A portion of the structure of (I), with the asymmetric unit labelled, apart from the uncoordinated water molecules, and with displacement ellipsoids drawn at the 40% probability level. C-bound H atoms have been omitted for clarity. The twofold axis through Co1 relates atoms by the symmetry operator $\left(\frac{1}{2}-x, y, \frac{3}{2}-z\right)$, while the twofold axis through Co 2 relates atoms by the symmetry operator $\left(\frac{3}{2}-x, y, \frac{3}{2}-z\right)$. Bipyridine molecules in each coordination environment are related by translation in the b direction.

Figure 2
The distorted rectangular two-dimensional $(4,4)$ grid sheet of (I). Co atoms are pink, C atoms grey, N atoms blue and O atoms red.

Figure 3
The crystal packing in (I), indicating the $A B A B$ arrangement to form a three-dimensional porous MOF, with water molecules residing in the cavities.

A portion of the structure of (I) is shown in Fig. 1. There are two types of Co atoms, both of which lie on a twofold axis, both having an $\mathrm{O}_{4} \mathrm{~N}_{2}$ coordination, with the N atoms trans. Atom Co 1 has two water molecules and two carboxylate O atoms in the equatorial plane, while atom Co 2 has four carboxylate O atoms in this plane. Also along these twofold axes lie two independent $4,4^{\prime}$-bipyridine bridging ligands, forming parallel . . bipy-Co-bipy-Co .. chains in the [010] direction. One BPTC ligand has two of its COOH groups deprotonated (at C1 and C15), while the other two (at C14 and $\mathrm{C} 16)$ remain protonated. The $\mathrm{C} 1 \mathrm{COO}^{-}$group bridges the Co 1 and Co 2 chains through two O atoms, while the C15 COO^{-}group is monodentate to Co 2 , with atom O 6 uncoordinated and accepting two hydrogen bonds, discussed below.

The H_{2} BPTC ligand deviates significantly from planarity, with a torsion angle about its central $\mathrm{C} 7-\mathrm{C} 8$ bond of $-114.1(5)^{\circ}$, while the bipyridyl ligands are slightly nonplanar, with twists about their central $\mathrm{C}-\mathrm{C}$ bonds of about 20 and 30°, respectively (Table 1).

Topologically, the structure can be viewed as a rectangular two-dimensional $(4,4)$ grid, with Co nodes bridged by H_{2} BPTC and $4,4^{\prime}$-bipy to form a layer (Fig. 2). These twodimensional layers are further packed in an $\cdots A B A B \cdots$ fashion by hydrogen bonding (Table 2) to form a threedimensional porous structure, in the cavities of which a small number of water molecules reside (Fig. 3). Both COOH groups are donors in the hydrogen-bonding scheme, as are both H atoms of the coordinated water molecule. Hydrogen
bonding by the cavity water molecules is less clear, as only one H atom could be located.

Experimental

The title compound was synthesized by the hydrothermal reaction of $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, biphenyl-2,2',5,5'-tetracarboxylic acid and 4,4'bipyridine (1:1:1 mole ratio) in dimethylformamide-ethanol-water (3:3:2 v / v) at 353 K . Very small pink crystals of the title compound were formed and these were collected in 36% yield.

Crystal data

$$
\begin{array}{ll}
{\left[\mathrm{Co}_{2}\left(\mathrm{C}_{16} \mathrm{H}_{8} \mathrm{O}_{8}\right)_{2}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2^{-}}\right.} & V=2445.0(17) \AA^{3} \\
\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O} & Z=2 \\
M_{r}=1194.78 & D_{x}=1.623 \mathrm{Mg} \mathrm{~m}^{-3} \\
\text { Monoclinic, } P 2 / n & \text { Mo } K \alpha \text { radiation }^{2} \\
a=9.877(4) \AA & \mu=0.77 \mathrm{~mm}^{-1} \\
b=11.393(4) \AA & T=105 \mathrm{~K} \\
c=21.763(10) \AA & \text { Prism, pink } \\
\beta=93.25(2)^{\circ} & 0.10 \times 0.07 \times 0.05 \mathrm{~mm}
\end{array}
$$

Data collection

Nonius KappaCCD area-detector diffractometer (with an Oxford Cryosystems Cryostream cooler) ω scans with κ offsets
Absorption correction: multi-scan
(SCALEPACK; Otwinowski \&

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.065$
$w R\left(F^{2}\right)=0.140$
$w R\left(F^{2}\right)=0.140$
$S=1.02$
5795 reflections
377 parameters
H-atom parameters constrained

Minor, 1997)
$T_{\text {min }}=0.932, T_{\text {max }}=0.962$ 18159 measured reflections 5795 independent reflections 3130 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.085$
$\theta_{\text {max }}=27.9^{\circ}$

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0391 P)^{2} \\
&+1.6222 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.95 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.77 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

Co1-O1W	2.057 (3)	Co2-O2	2.056 (3)
Co1-O1	2.087 (3)	$\mathrm{Co} 2-\mathrm{N} 3{ }^{\text {ii }}$	2.111 (5)
Co1-N1	2.137 (4)	Co2-N4	2.160 (5)
$\mathrm{Co} 1-\mathrm{N} 2^{\mathrm{i}}$	2.165 (4)	Co2-O5	2.214 (3)
$\mathrm{O} 1 W^{\mathrm{iii}}-\mathrm{Co} 1-\mathrm{O} 1 W$	175.56 (16)	$\mathrm{O} 2-\mathrm{Co} 2-\mathrm{N} 3{ }^{\text {ii }}$	91.12 (7)
$\mathrm{O} 1 W^{\text {iii }}-\mathrm{Co} 1-\mathrm{O} 1$	97.06 (12)	$\mathrm{O} 2-\mathrm{Co} 2-\mathrm{N} 4$	88.88 (7)
$\mathrm{O} 1 W-\mathrm{Co} 1-\mathrm{O} 1$	82.68 (11)	$\mathrm{O} 2-\mathrm{Co} 2-\mathrm{O} 5{ }^{\text {iv }}$	81.89 (11)
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{O} 1^{\text {iii }}$	173.34 (15)	$\mathrm{N} 4-\mathrm{Co} 2-\mathrm{O}^{\text {iv }}$	93.24 (7)
$\mathrm{O} 1 W-\mathrm{Co} 1-\mathrm{N} 1$	92.22 (8)	O2-Co2-O5	98.23 (11)
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{N} 1$	93.33 (7)	$\mathrm{O} 2{ }^{\text {iv }}-\mathrm{Co} 2-\mathrm{O} 5$	81.89 (11)
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{N} 2{ }^{\text {i }}$	86.67 (7)	N4-Co2-O5	93.24 (7)
$\mathrm{O} 2-\mathrm{Co} 2-\mathrm{O}^{2 \mathrm{iv}}$	177.77 (15)	$\mathrm{O} 5{ }^{\text {iv }}-\mathrm{Co} 2-\mathrm{O} 5$	173.52 (14)
C2-C7-C8-C9	-114.1 (5)	C24-C25-C26-C27	-31.0 (3)
C18-C19-C20-C21	-159.9 (3)		
Symmetry codes: (i) $-x+\frac{3}{2}, y,-z+\frac{3}{2} .$	$y+1, z ; \quad \text { (ii) }$	y-1,z; (iii) $-x+$	+ $\frac{3}{2}$; (iv)

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 3 \mathrm{O} \cdots \mathrm{O}^{\text {v }}$	0.84	1.91	2.724 (4)	162
$\mathrm{O} 7-\mathrm{H} 7 \mathrm{O} \cdots \mathrm{O} 2 W^{\text {vi }}$	0.84	1.83	2.651 (5)	166
$\mathrm{O} 1 W-\mathrm{H} 11 W \cdots \mathrm{O} 4^{\text {vii }}$	0.84	1.94	2.775 (4)	172
$\mathrm{O} 1 W-\mathrm{H} 12 W \cdots \mathrm{O} 5^{\text {viii }}$	0.84	1.81	2.636 (4)	168
$\mathrm{O} 2 W-\mathrm{H} 21 W \cdots \mathrm{O}^{\text {v }}$	0.84	1.93	2.768 (5)	171
Symmetry codes: $-x+1,-y+1,-z+1$	$\begin{align*} & -x+2,-y+1,-z+1 \tag{vii}\\ & x-1, y, z \end{align*}$		$x-1, y-1, z ;$	

C-bound H atoms were included in the riding-model approximation, with $\mathrm{C}-\mathrm{H}=0.95-0.99 \AA$ and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. $\mathrm{O}-$ bound H atoms were placed with $\mathrm{O}-\mathrm{H}=0.84 \AA$, guided by difference maps, and with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$. One of the H atoms on water molecule O 2 W and both of those on water molecule O 3 W could not be located with certainty and were not included in the model.

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski \& Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski \& Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

This research was supported by China Pharmaceutical University (JX), the University of Texas-Pan American through a faculty research council award to BC, and in part by the Welch Foundation grant (No. BG-0017) to the Department of Chemistry. The purchase of the diffractometer was made possible by grant No. LEQSF (1999-2000)-ENH-TR-13, administrated by the Louisiana Board of Regents.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Chen, B., Liang, C., Yang, J., Contreras, D. S., Clancy, Y. L., Lobkovsky, E. B., Yaghi, O. M. \& Dai, S. (2006). Angew. Chem. Int. Ed. 45, 1390-1393.
Chen, B., Ockwig, N. W., Millward, A. R., Contreras, D. S. \& Yaghi, O. M. (2005). Angew. Chem. Int. Ed. 44, 4745-4749.

Chun, H., Dybtsev, D. N., Kim, H. \& Kim, K. (2005). Chem. Eur. J. 11, 35213529.

Eddaoudi, M., Moler, D. B., Li, H., Chen, B., Reineke, T. M., O'Keeffe, M. \& Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319-330.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Janiak, C. (2003). Dalton Trans. pp. 2781-2804.
Kitagawa, S., Kitaura, R. \& Noro, S. (2004). Angew. Chem. Int. Ed. 43, $2334-$ 2375.

Ma, B.-Q., Mulfort, K. L. \& Hupp, J. T. (2005). Inorg. Chem. 44, 4912-4914.
Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Rather, B. \& Zaworotko, M. J. (2003). Chem. Commun. pp. 830-831.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Yaghi, O. M., O'Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. \& Kim, J. (2003). Nature (London), 423, 705-714.

