metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

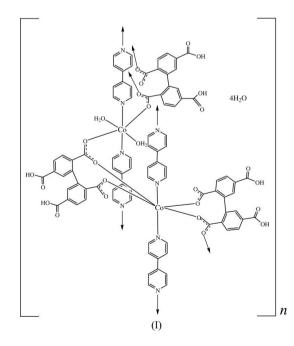
Ji-Yang Xu,^a Damacio S. Contreras,^b Frank R. Fronczek^c and Banglin Chen^b*

^aDepartment of Biochemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China, ^bDepartment of Chemistry, The University of Texas-Pan American, Edinburg, TX 78541-2999, USA, and ^cDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA

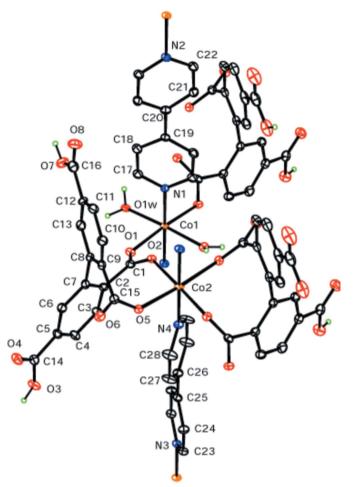
Correspondence e-mail: banglin@utpa.edu

Key indicators

Single-crystal X-ray study T = 105 KMean σ (C–C) = 0.006 Å H-atom completeness 87% R factor = 0.065 wR factor = 0.140 Data-to-parameter ratio = 15.4


For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Poly[diaquabis(μ_2 -4,4'-bipyridine)bis(μ_3 -5,5'-dicarboxybiphenyl-2,2'-dicarboxylato)-dicobalt(II) tetrahydrate]


In the title compound, $\{[Co_2(C_{16}H_8O_8)_2(C_{10}H_8N_2)_2(H_2O)_2]$ -4H₂O}_n, two types of Co atoms are bridged by 5,5'-dicarboxybiphenyl-2,2'-dicarboxylate and 4,4'-bipyridine ligands to form a rectangular two-dimensional (4,4) grid. Packing of these grids mediated by hydrogen bonding leads to a threedimensional porous metal–organic framework with water molecules inside the cavities. Both of the independent Co atoms lie on a twofold axes, upon which the long axes of both bipyridine ligands also lie, forming chains in the [010] direction. Both Co atoms have a *trans*-O₄N₂ coordination, but one has four carboxylate O atoms in the equatorial plane, while the other has two carboxylates and two water molecules in this plane.

Comment

There has been extensive research interest in porous metalorganic frameworks (MOFs) for their potential applications in gas storage, separation, molecular recognition, magnetism and catalysis (Eddaoudi *et al.*, 2001; Kitagawa *et al.*, 2004; Yaghi *et al.*, 2003; Janiak, 2003). These kinds of porous MOFs can not only be constructed from single organic linkers (Chen *et al.*, 2005), but can also be self-assembled from mixed organic linkers (Rather & Zaworotko, 2003; Chun *et al.*, 2005; Ma *et al.*, 2005; Chen *et al.*, 2006). The title compound, (I), is one of the MOFs constructed from cobalt(II) nitrate and the organic linkers biphenyl-2,2',5,5'-tetracarboxylic acid (H₄BPTC) and 4,4'-bipyridine, and its structure is reported here.

© 2006 International Union of Crystallography All rights reserved Received 22 June 2006 Accepted 17 July 2006

Figure 1

A portion of the structure of (I), with the asymmetric unit labelled, apart from the uncoordinated water molecules, and with displacement ellipsoids drawn at the 40% probability level. C-bound H atoms have been omitted for clarity. The twofold axis through Co1 relates atoms by the symmetry operator $(\frac{1}{2} - x, y, \frac{3}{2} - z)$, while the twofold axis through Co2 relates atoms by the symmetry operator $(\frac{3}{2} - x, y, \frac{3}{2} - z)$. Bipyridine molecules in each coordination environment are related by translation in the *b* direction.

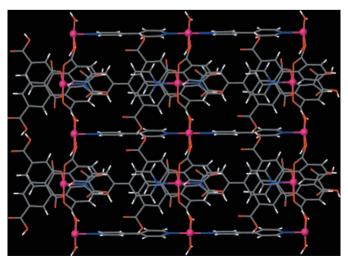
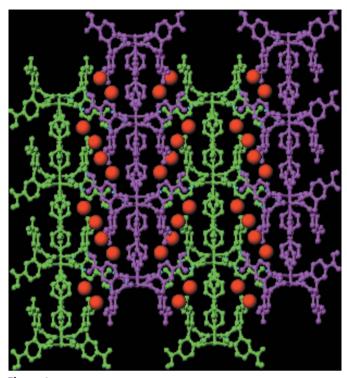



Figure 2

The distorted rectangular two-dimensional (4,4) grid sheet of (I). Co atoms are pink, C atoms grey, N atoms blue and O atoms red.

Figure 3 The crystal packing in (I), indicating the *ABAB* arrangement to form a three-dimensional porous MOF, with water molecules residing in the cavities.

A portion of the structure of (I) is shown in Fig. 1. There are two types of Co atoms, both of which lie on a twofold axis, both having an O_4N_2 coordination, with the N atoms *trans*. Atom Co1 has two water molecules and two carboxylate O atoms in the equatorial plane, while atom Co2 has four carboxylate O atoms in this plane. Also along these twofold axes lie two independent 4,4'-bipyridine bridging ligands, forming parallel \cdots bipy–Co–bipy–Co \cdots chains in the [010] direction. One BPTC ligand has two of its COOH groups deprotonated (at C1 and C15), while the other two (at C14 and C16) remain protonated. The C1 COO⁻ group bridges the Co1 and Co2 chains through two O atoms, while the C15 COO⁻ group is monodentate to Co2, with atom O6 uncoordinated and accepting two hydrogen bonds, discussed below.

The H₂BPTC ligand deviates significantly from planarity, with a torsion angle about its central C7–C8 bond of $-114.1 (5)^{\circ}$, while the bipyridyl ligands are slightly nonplanar, with twists about their central C–C bonds of about 20 and 30° , respectively (Table 1).

Topologically, the structure can be viewed as a rectangular two-dimensional (4,4) grid, with Co nodes bridged by H_2BPTC and 4,4'-bipy to form a layer (Fig. 2). These twodimensional layers are further packed in an $\cdots ABAB \cdots$ fashion by hydrogen bonding (Table 2) to form a threedimensional porous structure, in the cavities of which a small number of water molecules reside (Fig. 3). Both COOH groups are donors in the hydrogen-bonding scheme, as are both H atoms of the coordinated water molecule. Hydrogen

metal-organic papers

bonding by the cavity water molecules is less clear, as only one H atom could be located.

Experimental

The title compound was synthesized by the hydrothermal reaction of $Co(NO_3)_2$ ·6H₂O, biphenyl-2,2',5,5'-tetracarboxylic acid and 4,4'bipyridine (1:1:1 mole ratio) in dimethylformamide–ethanol–water (3:3:2 ν/ν) at 353 K. Very small pink crystals of the title compound were formed and these were collected in 36% yield.

Crystal data

$[Co_2(C_{16}H_8O_8)_2(C_{10}H_8N_2)_2-$	$V = 2445.0 (17) \text{ Å}^3$
$(H_2O)_2]\cdot 4H_2O$	Z = 2
$M_r = 1194.78$	$D_x = 1.623 \text{ Mg m}^{-3}$
Monoclinic, $P2/n$	Mo $K\alpha$ radiation
$a = 9.877 (4) \text{ Å}_{a}$	$\mu = 0.77 \text{ mm}^{-1}$
b = 11.393 (4) Å	T = 105 K
c = 21.763 (10) Å	Prism, pink
$\beta = 93.25 \ (2)^{\circ}$	$0.10 \times 0.07 \times 0.05 \text{ mm}$

Data collection

Nonius KappaCCD area-detector	Minor, 1997)
diffractometer (with an Oxford	$T_{\min} = 0.932$, $T_{\max} = 0.962$
Cryosystems Cryostream cooler)	18159 measured reflections
ω scans with κ offsets	5795 independent reflections
Absorption correction: multi-scan	3130 reflections with $I > 2\sigma(I)$
(SCALEPACK; Otwinowski &	$R_{int} = 0.085$
(SCALEPACK; Otwinowski &	$\begin{aligned} R_{\rm int} &= 0.085\\ \theta_{\rm max} &= 27.9^{\circ} \end{aligned}$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0391P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.065$	+ 1.6222P]
$wR(F^2) = 0.140$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.02	$(\Delta/\sigma)_{\rm max} < 0.001$
5795 reflections	$\Delta \rho_{\rm max} = 0.95 \ {\rm e} \ {\rm \AA}^{-3}$
377 parameters	$\Delta \rho_{\rm min} = -0.77 \ {\rm e} \ {\rm \AA}^{-3}$
H-atom parameters constrained	

Table 1

Selected geometric parameters (Å, °).

· · ·			
Co1-O1W	2.057 (3)	Co2-O2	2.056 (3)
Co1-O1	2.087 (3)	Co2-N3 ⁱⁱ	2.111 (5)
Co1-N1	2.137 (4)	Co2-N4	2.160 (5)
Co1-N2 ⁱ	2.165 (4)	Co2-O5	2.214 (3)
$O1W^{iii}$ -Co1-O1W	175.56 (16)	O2-Co2-N3 ⁱⁱ	91.12 (7)
O1W ⁱⁱⁱ -Co1-O1	97.06 (12)	O2-Co2-N4	88.88 (7)
O1W-Co1-O1	82.68 (11)	O2-Co2-O5 ^{iv}	81.89 (11)
O1-Co1-O1 ⁱⁱⁱ	173.34 (15)	N4-Co2-O5 ^{iv}	93.24 (7)
O1W-Co1-N1	92.22 (8)	O2-Co2-O5	98.23 (11)
O1-Co1-N1	93.33 (7)	O2 ^{iv} -Co2-O5	81.89 (11)
O1-Co1-N2 ⁱ	86.67 (7)	N4-Co2-O5	93.24 (7)
O2-Co2-O2 ^{iv}	177.77 (15)	O5 ^{iv} -Co2-O5	173.52 (14)
C2-C7-C8-C9	-114.1 (5)	C24-C25-C26-C27	-31.0 (3)
C18-C19-C20-C21	-159.9 (3)		
Symmetry codes: (i)	x, y + 1, z; (ii)	$x, y - 1, z;$ (iii) $-x + \frac{1}{2}, y$	$, -z + \frac{3}{2};$ (iv)

Symmetry codes: (1) x, y + 1, z; (1) x, y - 1, z; (11) $-x + \frac{1}{2}, y, -z + \frac{3}{2}$; (1v) $-x + \frac{3}{2}, y, -z + \frac{3}{2}$.

Table 2 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O3−H3 <i>O</i> ···O6 ^v	0.84	1.91	2.724 (4)	162
$O7-H7O\cdots O2W^{vi}$	0.84	1.83	2.651 (5)	166
$O1W-H11W\cdots O4^{vii}$	0.84	1.94	2.775 (4)	172
$O1W - H12W \cdot \cdot \cdot O5^{viii}$	0.84	1.81	2.636 (4)	168
$O2W-H21W\cdots O6^{v}$	0.84	1.93	2.768 (5)	171

Symmetry codes: (v) -x + 2, -y + 1, -z + 1; (vi) x - 1, y - 1, z; (vii) -x + 1, -y + 1, -z + 1; (viii) x - 1, y, z.

C-bound H atoms were included in the riding-model approximation, with C-H = 0.95–0.99 Å and with $U_{iso}(H) = 1.2U_{eq}(C)$. Obound H atoms were placed with O-H = 0.84 Å, guided by difference maps, and with $U_{iso}(H) = 1.5U_{eq}(O)$. One of the H atoms on water molecule O2W and both of those on water molecule O3W could not be located with certainty and were not included in the model.

Data collection: *COLLECT* (Nonius, 2000); cell refinement: *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *SCALEPACK* and *DENZO* (Otwinowski & Minor, 1997); program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

This research was supported by China Pharmaceutical University (JX), the University of Texas-Pan American through a faculty research council award to BC, and in part by the Welch Foundation grant (No. BG-0017) to the Department of Chemistry. The purchase of the diffractometer was made possible by grant No. LEQSF (1999–2000)-ENH-TR-13, administrated by the Louisiana Board of Regents.

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Chen, B., Liang, C., Yang, J., Contreras, D. S., Clancy, Y. L., Lobkovsky, E. B., Yaghi, O. M. & Dai, S. (2006). *Angew. Chem. Int. Ed.* **45**, 1390–1393.
- Chen, B., Ockwig, N. W., Millward, A. R., Contreras, D. S. & Yaghi, O. M. (2005). Angew. Chem. Int. Ed. 44, 4745–4749.
- Chun, H., Dybtsev, D. N., Kim, H. & Kim, K. (2005). Chem. Eur. J. 11, 3521–3529.
- Eddaoudi, M., Moler, D. B., Li, H., Chen, B., Reineke, T. M., O'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319–330.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Janiak, C. (2003). Dalton Trans. pp. 2781-2804.
- Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334– 2375.
- Ma, B.-Q., Mulfort, K. L. & Hupp, J. T. (2005). Inorg. Chem. 44, 4912-4914.
- Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Rather, B. & Zaworotko, M. J. (2003). Chem. Commun. pp. 830-831.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Yaghi, O. M., O'Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. (2003). *Nature (London)*, **423**, 705–714.